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Continuous time algorithm for Lyapunov exponents. II
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The continuous time form of the “standard” Lyapunov exponent algorithm is extended to include
an imaginary part. It is shown that both the familiar constant-coefficient case and the periodic-
coefficient case can be solved by this technique. However, while the algorithm is strongly stable in
converging on the real parts of the system characteristic exponents, it will produce random imaginary
parts. The choice of the original orthonormal matrix is critical: the special initial conditions which
lead to the correct imaginary parts for the constant-coefficient and periodic-coefficient cases are
found. Without a way to find the special initial orthonormal initial conditions for the general time-
dependent case, the imaginary part of a Lyapunov exponent remains difficult to calculate.

PACS numbers(s): 03.20.4i, 46.10.4+z

I. INTRODUCTION

The “standard” algorithm for calculating Lyapunov
exponents is that of Benettin and co-workers [1,2] and
Shimada and Nagashima [3]. In the preceding paper
Ref. [4], hereafter referred to as paper I, we showed that
this algorithm possesses a true continuous time formu-
lation, and that the method was fully equivalent to a
factorization of the system fundamental matrix into a
real orthonormal matrix E and a real upper triangular
matrix 7, in the form

o(t) = E(t)T (t)ET (to)- (1)

It has been proven that the “standard” algorithm con-
verges for almost any initial conditions on E(to) to the
(defined as real-valued) Lyapunov exponents of a dynam-
ical system.

In this paper, we explore the extension of the “stan-
dard” algorithm to complex matrices E and 7. In this
extension, we will be strongly guided by the solutions to
the two known special cases, the constant-coefficient and
periodic-coefficient linear systems. Of course, a general
technique for calculating stability exponents must be ca-
pable of reproducing these well-known results as special
cases of the general time-dependent linear problem.

II. TRIANGULAR DECOMPOSITION

The linearization of motion near a solution to the gen-
eral dynamical system

x = f(x,t) (2)
leads to the variational equations
d(t, t0) = A(t)2(t, to) (3

with initial conditions ®(to,t0) = I. The matrix A(t) =
Of /0% |q(+) will share some of the characteristics of the
reference trajectory x(¢). It will be a constant matrix if
x(t) is an equilibrium point, a periodic matrix if the tra-
jectory is a periodic orbit, and a general time-dependent
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matrix if x(t) is neither of the former cases. Since the
solutions to the first two of these are well known, they
serve as consistency checks on any algorithm to solve the
general case.

As in the preceding paper, consider factoring the fun-
damental matrix ® in the form

@(t,to) = E(t)T (t)E~" (to), (4)

where now E(t) and 7 (t) may be complex. Since E~1(¢o)
is constant, the matrix ¥ = ®E(tq) also obeys the vari-
ational equations (3). Direct calculation of a derivative
of ¥ and substitution into the variational equations then
gives

7= {E—IAE - E-lE} T = DT, (5)

where the new matrix D(t) is yet to be specified. We
then have the pair of equations

T = D®)T, (6)

E=AE-ED. (7

In this form we have seemingly doubled the system order,
but the matrix D(t) is still free.

It is extremely important to ensure that one of the
matrices F, 7 has strict boundedness properties. Now,
there is no more bounded matrix than a unitary matrix.
For such a matrix, the Hermitian transpose (denoted H)
is the inverse, so if F is unitary

EHE =1. (8)

A derivative of this relation gives
. . N\ H
EHE = -EHE = - (E"E) (9)

showing that EHE is skew Hermitian if E is unitary.

A skew Hermitian matrix has zeros on its diagonal, and

negatives of complex conjugates across the diagonal.
Return to Eq. (7) for E, and assuming F is unitary,
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write it as
EHE = EFAE - D. (10)

The right side above can be made skew if D(t) is an upper
triangular matrix. Choosing

dii(t) = (E¥ AE),,, (11)

di;(t) = (BYAE) + (B¥AE),., j>i (12
will accomplish this, where * is the complex conjugate,
and then (7) when integrated will produce a unitary E(t).

If we restrict £ and 7 to be real matrices, we have
the method of paper I. This is completely equivalent to
the standard algorithm of Benettin and co-workers and
of Shimada and Nagashima, so all of their convergence
proofs (for the real-valued form) pertain to at least the
real parts of the present method.

With D an upper triangular matrix, 7 also becomes
upper triangular. In fact, as we will see shortly, the equa-
tion 7 = D7 is a solvable linear system, assuming that
the elements d;;(t) are known functions. The process
is very reminiscent of the “back-substitution” portion of
Gaussian elimination.

The solution to the variational equations now takes the
form

6x(t) = ®(t,t0)6x(to) = E(t)T (t)EH (to)6x(to). (13)

Define n(t) = EH(t)6x(t). Since E is a unitary matrix,
the stability properties of 7 must be the same as those of
éx. Equation (13) for the solution becomes

n(t) =T (t)n(to)- (14)
Obviously, the matrix E(t) mediates a coordinate trans-
formation to a new system in which the solution to the
variational equations is an upper triangular matrix. In
fact, the variational equations themselves are now just
T = D(t)T, so they are upper triangular, as well.

Initial conditions can be chosen seemingly at random.
Since

®(to, to) = E(t0)T (to) E¥ (t0) = I, (15)

and since E is a unitary matrix, we must have 7 (¢o) = I.
On the other hand, E(tg) can be any unitary matrix.
This is a familiar feature of the “standard” algorithm,
where convergence is assured for any orthonormal real-
valued E(to) matrix. But if we choose E(t¢) real, it will
stay real for all time, and since A(t) is real valued, D(t)
will be real valued. It will thus be impossible to calculate
a Lyapunov exponent with an imaginary part. The choice
of complex E(tg) will lead to complex D and 7 matrices,
and holds out the possibility of defining an imaginary
part for a Lyapunov exponent.

III. REDUCTION TO KNOWN CASES

There are two known special cases of Eq. (3) which
have been solved completely. These are the cases where
A(t) is constant, and where A(t) is periodic in time. In
this section we explore the reduction to upper triangular
form for both of these cases.
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In the constant coefficient case, it is well known that
the fundamental matrix can be written as

®(t,tp) = eAt—t0), (16)

Replace A with its triangular decomposition A = EUEH,
where £ is unitary and U is upper triangular. Recall
that when factored in this form, the eigenvalues of A
appear as the diagonal elements of U. Now, expand the
matrix exponential (16) via the standard Taylor’s series

definition as
O(t,to) = I+EUEH(t—1to)

+§1T£U8H£U8H(t —to)?+---

=£ {I+ U(t —to) + %UU(t —to)z---}é’H
(17)
since £ is a unitary matrix. But this is just
B(t, tg) = EVttIEH (18)

This is of the form (4), with E(t) = £, constant, and
T =exp{U(t —to)}.

Furthermore, since U is upper triangular with the
eigenvalues of A along its diagonal, direct calculation
from the matrix exponential gives the diagonal elements
of T as

T, = erilt=to) (19)

So, the system characteristic exponents, both real and
imaginary parts, are found as

S 1
Wi = t-l'rgo —to

Actually, the limit is not necessary, but is included for
reasons of symmetry with later cases. This decom-
position solves the constant-coefficient case “instanta-
neously,” since no integration of (6) and (7) is needed.

The case of time periodic systems was solved by Flo-
quet [5]. In a time periodic system, the fundamental
matrix decomposes as

B(t, to) = F(t)e’ “™HIF~(to), (21)
where F(t) is a nonsingular periodic matrix, and J is a
constant Jordan form whose diagonal elements are the
Poincaré exponents.

Now, F'(t) can be decomposed as the product of a uni-
tary matrix £(t) and an upper triangular matrix U(t).
We proceed to show this by direct construction. Writing
the columns of F(t) as f; and the columns of £ as e;,
form the matrix product

F(t) = &U. (22)
The first column gives
f1(t) = u11(t)ei(t), (23)

where the scalar function u1;(¢) is the only nonzero entry
in the first column of U. Since e; is a normalized vector,
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. : _ 1
we immediately have u1; =|| f1 ||, and wi = tlim T,
—00 —
er="fi/ [ fil. (24) °
We cannot have || f; ||= 0, since F' is nonsingular. — lim 1 Inw,(8) + 7:(t — t iy = i
) = J o) +1Inny;(te)} =3
The second column of F(t) is given by t—oo t — 1 {Inwai(t) +5i( ) i(to)} = 3

fz(t) = ’U,lz(t)el(t) + U22(t)92(t). (25)
Since e; and ey are orthogonal, we immediately find
Uig = €1 * f2 (26)

(remember the dot product of complex vectors is given

by e; - fo = e’f,). The condition that e, has unit norm
1

yields

(I5%) =|| f2 — (61 . f2) e H . (27)

Again, this can never be zero since F(t) is nonsingular.
Finally, we have

ext) ={fa—(e1-f2)er1}/ [ f2 — (e1-f2) ey || . (28)
It should be obvious by now that this is the Gram-

Schmidt process for orthonormalizing a set of vectors.
Proceeding recursively, we do indeed find that

Ujj (t) =e;- fj J >, (29)
i—1

wii(t) = ||fi — Y _ (e; - £:) &5, (30)
=1

which can never be zero, and
i-1
ei(t)=qfi— > (e;-f)e; g uz'(?). (31)
j=1

The nonsingularity of F' guarantees that the process can
be completed, while the fact that F'(t) is periodic in time
and nonsingular shows by construction that both £(t)
and U(t) are time periodic nonsingular matrices.

The Floquet solution now takes the form

®(t,to) = ERUE)e? EU(t0)E L (to). (32)

The inverse of an upper triangular matrix is also upper
triangular, so this is of the form (4), with £(t) as the uni-
tary matrix of Gram-Schmidt basis vectors determined
from F'(t), and

T(t) = U(t)e? E10Y~1(tg) (33)

as the upper triangular matrix. Write the elements of
U(t) as ui;(t), and the elements of U~ (to) as n;;. Direct
calculation then gives the diagonal elements of 7 as

Tii = wgi(t)e? 0, (to), (34)

where the j; are the Poincaré exponents. We notice that,
as before,

(35)

are the system characteristic exponents, with both a real
and imaginary part. While (35) shows a limit, since U
is periodic the actual values of the system characteristic
exponents are available to us at the end of each period
T, since u;(7) = wii(to) = 1/n4:(%0)-

We have now proven that the “standard” algorithm
for Lyapunov exponents, as generalized in this paper,
is capable of solving both the constant-coefficient and
periodic-coefficient cases. This includes any imaginary
parts to the eigenvalues in the constant-coefficient case,
or imaginary parts to the Poincaré exponents in the pe-
riodic case. However, the orthonormal matrix F which
achieves this is special in both of these cases. It is found
from the triangular decomposition of A in the constant-
coefficient case, or the Gram-Schmidt factorization of the
F(to) matrix in the Floquet case. There is no reason to
believe that an arbitrary initial E(tg) matrix will cor-
rectly calculate the imaginary parts, although the real
parts are covered by the standard Lyapunov exponent
convergence proofs.

IV. THE TRIANGULAR SOLUTION

We mentioned earlier that the solution to (6) for 7 can
be obtained in closed form, assuming that the elements
of D(t) are known. Begin with the differential equation
for ¢ N,N»

tnn = dnN(E)tnN. (36)

This integrates immediately to give
t
tnn(t) = exp / d n(T)dr (37)
to

with initial condition ty,n = 1, since 7 (¢o) = I. Now,
examining the remainder of (6), we immediately notice
that the above solution form holds for all the diagonal
elements of T

’ di,i(T)dT. (38)

to

ti,i (t) = exp

The remaining equation on the next to the last row is
tn—1,vy =dn—1,N—1tN-1,N + dN_1,NtN,N- (39)

This is a linear time-dependent system with a known
forcing term. The Green’s function is

0, t<s
KN-—l(s1t) = exp (fst dN—l,N—-l(T)dT) , t>s.

(40)
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Solving (39) by standard techniques gives

t

tn-1,n(t) = ) Kn-1(s,t)dn_1,n(s)Kn(to,s)ds, (41)
0

where the initial condition of ty_1,n(t0) = O has been

applied.

Generalize the Green’s function Ky_j to K;(s,t) when
the diagonal element d; ; is employed in (40). In the
second to last row, the diagonal element has solution
tn_2,n—2(t) = Kn_2(to,t), while the other two elements
obey

tnN_2,N—1=dN_2 N-2tN—2 N—1

+dy_2 N-1tN—1,N-1 (42)

and

tn_a,N = dN—2,N—2tN—2,N
+dn_2,N-1tN-1,N +dN_2 NN N.  (43)

These are again single variable linear systems with known
forcing functions, and they both have the same Green’s
function, Kn_2(s,t). Their solutions are

t
tN—z,N—l(t)=/ Kn_2(s,t)
to

XdN_g’N_l(S)KN_l(to,S)ds (44)

and

t
tN—2,N=/ Kn-2(s,t)dN—2,n(s) KN (to, s)ds
to
t
+/ KN_z(S,t)dN—2,N—1(s)
to

8
x [ Kn-_1(o,t)dn_1,n(0)
to

x Kn(to,0)dods. (45)

The entire solution to (6) can be constructed in terms
of convolution integrals, proceeding upwards through
the 7 equation in a manner reminiscent of the back-
substitution portion of Gaussian elimination.

V. LYAPUNOV EXPONENTS

While the upper triangular variational equations are
still a coupled system, we have the solution for 7. The
solution for the off-diagonal elements employs only com-
binations of the exponential rates encountered in solving
for the diagonal elements. More to the point, since 7
is an upper triangular matrix, we know its eigenvalues.
These are just the diagonal elements of 7', and those are
available through (38). Thus, the average exponential
rates of change of the solution n (and therefore 6x) are
given by

wi(t) =

InT; =

! / 4 4(5)ds. (46)

t—to t—1to

In the limit as t — oo, these will then become the Lya-
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punov exponents generalized to include an imaginary
part

In 73

t

u(o0) = Jmy

= lim ——
t—oo t — 0 Jto

dm(s)ds. (47)
This definition agrees with the constant-coefficient case,
the periodic-coefficient case, and the real case of the
“standard” Lyapunov exponent algorithm as given in pa-
per L

Returning to the pair of systems (6) and (7), we see
that it is not necessary to solve for 7 (t) at all, if we are
only interested in calculating the Lyapunov exponents.
It is only necessary to propagate E(t), and perform the
N integrals in (46). These are easily done themselves
as differential equations. Since the underlying reference
trajectory must be propagated as well, we must solve
3N +2N? simultaneous real-valued differential equations.

VI. NUMERICAL EXPERIMENTS

We have conducted extensive testing of this method on
several dynamical systems, including constant-coefficient
and periodic-coefficient systems, as well as some general-
ized time-dependent systems with chaotic structure. As
was reported in paper I, the equations of motion for the
unitary matrix F, Eqgs. (6) and (12), are not necessar-
ily numerically stable. That is, while (6) and (12) do
mathematically produce a unitary E matrix when given a
unitary E(¢o), not all solutions to these differential equa-
tions are unitary. Numerical errors will inevitably cause
E(t) to depart slightly from a perfect unitary condition.
Then (6) and (12) may produce an exponential depar-
ture from the desired unitary solution. Or the numeri-
cal errors may decay exponentially, also. Equations (6)
and (12) are nonlinear in F, and have their own stability
properties.

To avoid this, the program we have constructed stores
only a portion of E including the diagonal elements and
elements above the diagonal. At each time step, the last
vector ey is renormalized to eliminate any numerical er-
ror. The missing last component of the next to last vector
en_1 is reconstructed from the requirements that it be
(i) orthogonal to ex and (ii) a unit vector. That is,

ev-eny-1=0, ey_j-ey_1=1 (48)

uniquely determine the missing last element of ey_j.
The last two missing elements of eny_o are determined
from

en-eny_2=0, ey_1-ey_2=0, ey_2-eny_2 =1,
(49)

and so forth. We are thus propagating the (N? 4 N)/2
upper triangular portion of Eq. (6), with the savings in
the number of differential equations being somewhat off-
set by the need to reconstruct the rest of E at each inte-
gration step. The resulting E matrix will be rigorously
unitary, however.
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(Notice that since T is upper triangular and F is uni-
tary, the apparent doubling of the number of differential
equations is not really correct. As we have implemented
the above method, we have only N “extra” differential
equations. If the final element of each vector e; were de-
termined from the normalization requirement, this would
eliminate all superfluous differential equations, at the ex-
pense of introducing a sign ambiguity for the last ele-
ment. We have chosen not to introduce this ambiguity.)

For constant-coefficient systems, the factorization of
Sec. III does indeed produce the correct system char-
acteristic exponents if the correct initial unitary matrix
&€ = E(to) is used. However, when random complex uni-
tary E(to) are employed, the result is different. For ex-
ample, the constant-coefficient system

0O 1 0

A= 0 0 1 (50)
—-13-17-5

has eigenvalues w; = —1, —2 + 3i. These are returned

by the method of the present paper if the special ini-
tial conditions for E(tg) are used. Figure 1 shows the
results of our algorithm with 20 different random E(to)
matrices as initial conditions. The purely real root is
calculated correctly in all cases, as are the real parts of
the complex-conjugate roots. However, the imaginary
parts lie at random values between —3i < Im w; < 3i.
This pattern has been observed in every other system ex-
amined. The real parts are correctly calculated for any
initial E(to), while the imaginary parts are only correct
if the “correct” E(tp) is used.

For the time-periodic case we have also explored sev-
eral systems. For the limit cycle in the Van der Pol equa-
tion the Poincaré exponents are purely real, and are cor-

<+
ey 0
- 4
3 @ &
£
© - @
T :
| :
| M
i
P &
<
) T " " T T
-2 -1
Re o
i

FIG. 1. Calculated w; for 20 cases of random initial
E(to) for a constant-coefficient system with eigenvalues w; =
—1, —2 4 3. The true characteristic exponents are indicated
by diamonds.
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FIG. 2. Calculated w; for 20 cases with random ini-
tial E(to) for a periodic orbit in the restricted problem of
three bodies. True values (diamonds on the plot) are w; =
+0, +0.66415¢.

rectly calculated by the present method even for random
initial conditions E(¢9). Of course, the “correct” E(to)
calculated from Floquet theory enables them to be pro-
duced with a much shorter integration, since they can
be extracted at the end of one period. We have also con-
structed periodic orbits in the restricted problem of three
bodies, a well known Hamiltonian system. For one exam-
ple we have extensively studied, the true Poincaré expo-
nents are w; = +0, £0.664153:. As shown in Fig. 2, the
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FIG. 3. Calculated w; for 20 cases with random initial
E(to) for the coupled Van der Pol system. One pair of roots
shows nonzero imaginary parts.
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zero roots are correctly calculated by the present tech-
nique, as are the zero real parts of the purely imaginary
Poincaré exponents. The imaginary parts, though, scat-
ter randomly (although in a bounded region) for random
initial E(to). Notice that the true values of the Poincaré
exponents do not lie at the extremes of the calculated
values from the numerical experiments.

Finally, for chaotic systems we have examined both the
Lorenz attractor and the coupled Van der Pol equations
studied by Kapitaniak and Steeb [6]. This system has
equations of motion

Ty =T,

iy =a(l — 2?)z2 — 23 + b(sin x5 + x3),

.’f:g = x4, (51)
#4 =a(l — 23)z4 — 3 + b(sinzs + x1),

:i75 =w.

We have used a = 0.2 and w = 4, with initial conditions
z; =1, 29 =0, 23 =0, x4 = 0, and 5 = 0. But
we have picked b = 5, which is below the transition to
chaos described in [6]. Figure 3 again shows 20 different
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calculations of Lyapunov exponents using different ran-
dom initial E(tg). Real parts were confirmed both by
the standard algorithm and by the method of paper I.
One pair of roots with real parts near Rew; ~ —0.36 has
conjugate imaginary parts, while the other pair is purely
real. No “true” values are shown, since no comparison
method is available.

VII. DISCUSSION AND CONCLUSIONS

We have shown that the continuous time version of
the standard method, as presented in paper I, can be ex-
tended to include an imaginary part. Furthermore, this
extension agrees with both the constant-coefficient and
periodic-coefficient cases when the correct initial condi-
tions are used for the unitary matriz E(tg). Numeri-
cal experiments confirm the success of this extension, as
well as emphasizing the necessity of correct initial condi-
tions for E. Otherwise, the algorithm calculates the real
parts correctly, but the imaginary parts are random. The
numerical work also confirms that some general time-
dependent systems show nonzero imaginary parts.
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